CONTROL MANAGER

Dan Oliver

Initial release 02/20/86

- display or hide controls
- monitor the user's operation of a control with the mouse and respond accordingly
- read or change the setting or other properties of a control

- change the size, location, or appearance of a control

Certain standard types of controls are predefined for you. Your application can easily use controls
of these standard types, and can also define its own custom” control types. The predefined
control types are the following:

- Buttons cause an immediate or continuous action when clicked or pressed with the mouse.
They appear on the screen as rounded-corner rectangles with a title centered inside.

- Check boxes retain and display a setting, either checked (on) or unchecked (off); clickin g
with the mouse reverses the setting. On the screen, a check box appears as a smal] square
with a title alongside it: the box is either filled in with an "X" (checked) or empry
(unchecked). Check boxes are frequently used to contro] or midify some future action.
instead of causing an immediate action of their own.

- Radio buttons also retain and display an on-or-off setting. They're organized into groups.
with the property that only one button in the group can be on at a time- clicking any bution
on turns off all the others in the group, like the buttons on a car radio. Radio buttons are
used to offer a choice amoung several alternatives. On the screen, they look like round
check boxes; the radio button that's on is filled with a smal] black circle instead of an "X

- Scroll bars are predefined dials. A dail displgys a quantitative setting or value, typically in

indicator. The user may be able to change a dial's setting by dragging its indicator with the

February 20, 1986

mouse, or the dial may simply display a value not under the user's direct control (such as
the amount of free space remaining on a disk).

The following diagram shows the parts of the vertical and horizontal scroll bars.

{}a—Up ATV
Yertcal Scroll Bar TTq—Pege UP
|__v7ertical Thumb
Horizontl Thumd —
Page Left Page Right e Page Down

Left ATOV \ \' Right ArTToW {}4——' Down AoV

e parts of the s gcncralized into three regions: arrows, paging, and
thumb (or thumber). The arrows scroll data @ line at a ime, paging regions scroll a 'page
at a time, and the thumb can be dragged to any position within the scroll area. Although
they may seem 10 behave like individual controls, these ar¢ all parts of a single conmol, the
scroll bar type of dial. Youcan define other dials of any sh

if your application needs them.

ape or complexity for yoursell

Scroll bars are porportional, that is they show the relationship between the total amount of
data and the amount viewed, and where the view is.

Data In View

February 20, 1986

When clicked or pressed, a control is usually highlighted. Standard button controls are inverted.
but some control types may use other forms of highlighting, such as making the outline heavier.
It's also possible for just a part of a control to be highlighted: for example, when the user presses
the mouse button inside a scroll arrow or the thumb in a scroll bar, the arrow or the thumb (not the
whole scroll bar) becomes highlighted.

A control may be active or inactive. Active controls respomd to the user's mouse actions; inactive
controls don't. A comtrol is made inactive when it has no meaning or effect in the current context.
such as an "Open" button when no document has been selected to open, or a scroll bar when

there's currently nothing to scroll to. An inactive control remains visible, but is highlighted in
some special way, depending on its control type. For example, the title of an inactive button, check
box, or radio button is dimmed.

NTROLS AND WINDOW

Every control "belongs" to a window: When displayed, the control appears within that window's
content region; when manipulated with the mouse, it acts on that window. All coordinates
pertaining to the control (such as those describing its location) are given in its window's local
coordinate system. -

However, even though controls belong to windows, it is not necessury for the Window Manager to
be installed. Your application can create a window record to pass when adding a control to a
control list. The Control Manager needs the window record as a place for the head of the control
list and the window's origin is used with the control's position to come up with the screen position.
This feature is included for applications that do not need windows, " ut would like to use contols
without losing memory the Window Manager would take up.

February 20, 1986

ART DES

Some controls, such as buttons, are simple and straightforward. Others can be complex objects
with many parts: for example, a scroll bar has two scroll arrows, two paging regions, and a thumb.
‘To allow different parts of a control to respond to the mouse in different ways, many of the Conmol
Manager routines accept a part code as a parameter or return one as a result.

A part code is a number between 0 and 255 that stands for a particular part of a control. Each type
of control has its set of part codes. Some of the Control Manager routines need to give special
treatment to the indicator of a dial (such as the thumb of a scroll bar). To allow the Control
Manager to recognize such indicators, they always have part codes greater than 127.

The part codes for the predefined controls are as follows:
0 = No part.
10 = Simple button.
11 = Check box.
12 =Radio button.

20 = Up arrow in vertical scroll bar.

21 =Down arrow in vertical scroll bar.
22 = Left arrow in horizontal scroll bar.
23 = Right arrow in horizontal scroll bar.
24 =Page up in vertcal scroll bar.

25 = Page down in vertical scroll bar.

26 = Page left in horizontal scroll bar.

27 = Page right in honzontal scroll bar.

128 = Reserved. .

129 = Reserved.

130 = Thumb in vertical scroll bar.
131 = Thumb in horizontal scroll bar.
254 = Reserved. :

255 = Reserved.

February 20, 1986 Qi 5 Pl

USING THE CONTROL MANAGER

This section discusses how the Control Manager routines fir into the general flow of an application

and gives you an idea of which routines you'll need to use. The routines themselves are described
in detail in CONTROL MANAGER ROUTINES. .

To use the Control Manager, you must have previously called InitGraf to initialize QuickDraw and
InitFonts to initialize the Font Manager if you are going to use controls with text in them.

Control Manager calls for you. Also, the Window Manager will make Contro]
Manager calls concerning standard window controls.

Where appropriate in your program, use NewControl to add any controls you need.
NewControl will set the control's owner to the window pointer passed and add the contro] to the
head of the window's control list. When you no longer need a control, call DisposeControl 10
remove it from its window's control list and erase it from the screen. To dispose of all a window
controls at once, use KillControls,

Note: The Window Manager procedures DisposeWindow and CloseWindow
automnatically dispose of all the controls associated with the given window.

When the Toolbox Event Manager function GetNextEvent reports that an update event has
occurred for a window, the application should cal] DrawControls to redraw the window's
controls as part of the process of updating the window.

After receiving a mouse-down event from GetNextEvent, do the following:

1. If you are using windows, first cal] FindWindow to determine which part of which
window the mouse button was pressed in. If it was in the content region of the active
window, use that window's control list.

2. If the event did occur in a content area call FindControl with the pointer to the first contro!
in the list to find out whether the event occurred on an actve control.

3. Finally, if FindControl Teturmns a pointer to a control, cal] TrackControl to handle user
interaction with the contro. TrackControl will handle the highlighting of the contro] an¢
determines whether the mouse 1s still in the control when the mouse button is released. I
also handles the dragging of the thumb in a seroll bar and, via your action procedure, the
TESponse to presses or clicks in the other parts of a scroll bar. When TrackControl
retumns the part code for a button, check box, or radio button, the application must do
whatever is appropriate as a Tesponse 10 a click of that control. When TrackControl

returns the part code for the thumb of a scroll bar, the application should scroll to the

February 20, 1986

a check box or radio button is clicked, to change the setting and draw or clear the mark inside the
control.

Wherever needed in your program, you can call HideControl to make a control invisible or
ShowControl to make it visible. Similarly, MoveControl, which simply changes a control’s
location without pulling around an outline of it, can be called at any time, as can SizeControl,
which changes its size. For example, when the user changes the size of a document window that
contains a scroll bar, you'll call HideControl to remove the old scroll bar, MoveControl and
SizeControl to change its location and size, and ShowControl to display it as changed.
Whenever necessary, you can read various attributes of a control with GetCTitle,
GetgtlSMinMax, or GetCtIState; you can change them with SetCTitle, SetCtIMinMax, or
SetCtiState.

February 20, 1986

CONTROL RECORDs

Every control has the same fro
the end of the general contro]

NextCtr] LONG
CtrlFIag BYTE
Bit6
Bits
Bits 4-0
ClOwner LONG
CulRect RECT

nt end to jts control record. Additiona] data

can then be appended

record. The Geners] Control Record follows:
Pointer to next control, zero = last contro].
Bit7 1 = active.
0 = inactive (dimmed),
1 = visib]e.
= Invisible.
1= highlighted (selected),
0 = norma].
contro] ID.

Pointer to window this contro] belongs to.
Enclosing rectangle,

The followin 8 are predefined records:

Simple Button Control Record:

NextCtr LONG
CULF}ag BYTE
CalOwner LONG
CtrlRect RECT
CuINColor BYTE
CelIColor BYTE
CtlTitle STRG

February 20, 1986

Pointer 1o next
Bit_s 4-0, 0 = thick outline, 1 = th

Button coordinates.
ormal color.,
Low nibbje =
High nibble =
Inverted coor. .
Low nibbje = color of text when
High nibb]
Low = Hj

color of text and button outline.
button's interior color.

selected.
= button's interior color when selecteg
High to use special highlight.

Check Box Control Record:

NextCtrl LONG Pointer to next control, zero = last cor
CtriFlag BYTE Bits 4-0 = 1, check box contro] ID.
CalOwner LONG Pointer to window this conrro] belong:
CtriRect RECT Check box coordinates.

CtaINColor BYTE Normal color,
Low nibbje = color of tex
High nibble = button's int,
CtrlIColor BYTE Inverted color.
Low nibble = color of X.
High nibble = button's inte.
CtlTite STRG Title to right of check box.

Radio Button Control Record:

NextCrrl LONG Poiptcr to next control, zero = Jas¢ control.
CrtriFlag BYTE Bis 4-0 = 2, radio button contro] ID.
CtrlOwner LONG Pointer 1o window this contro] belongs to.
CtriRect RECT Buton coordinates.

CtriNColor BYTE Normaj color.
Low nibble = color of text ang
' High nibble = button’s interior
CelIColor BYTE Inverted color.
High nibble = button’s interior o
CriTite STRG Title to right of check box.

February 20, 1986 - QT

NextCtl
CtrlFlag
CtrlOwner
CtrlRect
Thumb
ScrollCur
ScroliMin
ScrollMax
SBarColor

ThumbColor

ArrowColor

Scroll Bar Control Record: -

LONG

BYTE
BYTE

February 20, 1986

Pointer to next control, zero = last control.
Bits 4-0, 3 = horizonal scroll bar, 4 = vertical scroll bar.
Pointer to window this control belongs to.
Coordinates of scroll bar.
Coordinates of thumber box.
Current value.
Minimum value.
Maximum value.
High BYTE = pattern:
0 = solid.
1 = dither.
2 = dotted.
Low BYTE = color:
High nibble = pattern color.
Low nibble = color of background.
High NIBBLE = interior of thumber box when normal.
Low NIBBLE = interior of thumber box when inverted.
High NIBBLE = interior color of arrow box.
Low NIBBLE = interior of arrow when inverted.

10 D)

U)C Window: L ON
Outpy,.

=AY

éetCTitIe Cayy # (not comp]eted)
Inpy;. u'tlc:LONG Addreg of ney, ttle.
cControI:LONG Pointer 10 congy.
Outpy. None,
funca'on: Se t.heControl S title the 8lven String and Tedray th
Getc Title C (not completcd)
Inpy;- u’tle:LONG ‘ Addreg; T€ to pyp tle,
cCon&oI:LONG Pojn ter ¢ tro].
Outpy; None.
funcu’on: TthontroI S ttle is oved in¢o ttle,
HideControl Calr (not omplezed)
Inpy;. eContro]:L NG Onter ¢ Contrg)
Outpy;. None
funcu‘on: Ontro; nvig;p, Us ¢ ol's €Ct wiry Its
Windoy, nte tbackgr d pay ™ a Color and aqq Co Ctio
he w; S up e regjy . € contro; 18 alreg invz'sjbl
H deControl ha ffecy,
ShowControl Caj # (not omp]ercd)
Inpy. eControl:LO G Ownter 4, contro]
Outpy- None
funcu‘on: Makeg ol visip;
€ com Yorp
Objects

DrawControls

input:

output:

function:

Call (not
drawNum:WORD Nurm
-theControl:LONG Poin

None.

Draws any number of controls,
you want every control in the w
the first control as theControl a
are drawn in reverse order of cr
earliest-created controls appear

Note: Window Manager routines such :
and BringToFront do not automaticall
window's controls. They just add the aJ
update region, generating an update ever
DrawControls explicitly upon receivin,
contains controls.

HiliteControl

input:

output:

function:

ControlState

input:

output:

function:

February 20, 1986

Call # (not ¢.
hiliteState:WORD Opera
theControl:LONG Pointe

None.
Control part is redrawn using hils
High BYTE: $00 = unhig

$01 = highl:
Low BYTE: part number.

Call # (not co

CrriState: WORD TRUE

FALSE
theControl:LONG Pointer
None.

Control is redrawn in CriState.

MOUSE LOCATION

FindControl Call# (notcompletec
input: thePoint:LONG Point, in local
theControl:LONG Pointer to list.

output: FoundCtl:LONG Pointer to con:

function: Find the control, if any, thePointis on. T
control found, or zero if no control is fou

Because the control list is searched from !
address of a control so you have more thz
FindControl will always return the last ¢
controls that overlap. However, if you fc
first control found you could condnue the
control as theControl.

TestControl Call # (not completed
input: thePoint: LONG Point, in local ¢

+ theConrol: LONG Pointer to contr

output: PartCode:WORD Part thePoint is

function: Find what part of a control thePoint is on.
coordinates. PartCode is:

Zero if thePoint is not on control.
High BYTE = S00 if control is actiy

= $FF if control is inac
Low BYTE = part number.

February 20, 1986 : @

TrackControl

input:

output:

functon:

February 20, 1986

Call # (not completed)
StartP:LONG Starting position of mouse.

StartState: WORD Starting button state, 1 = down.
Acton:LONG Address of routine, or zero.

theControl: LONG Pointer to control.

PartCode:WORD Selected part when button was released.

If StartPt is over a selectable part of theControl, and the control is
active, the part is highlighted. The mouse's positon is then tracked
until the button is released (or pressed and then released). While
tracking the mouse TrackControl will inform the user graphically as
appropriate for the control. When the button is relased the part will be
unhighlighted if it was highlighted, and return the part number affectec.
If the button was released outside of the original part, zero will be
returned.

StartState is provided to support hot controls. Here are the possibilites.

StartState Mouse Tracked Unuil

$0001 Button is released, used for all predefined controls.
$0000 Button is down and then released, button may be down
when called.

SFFFF Mouse leaves part.

If Acton is nonzero, it is the address of a routine in your application
that will be repeatedly called while the original part is selected. Your
routine will be called as quickly as possible, there is no delay factor
other than to determine the part is still selected. This function 1s useful
when the user selects an arrow on a scroll bar and keeps the button
pressed until desired data scrolls into view.

Input to your routine:

PartCode:WORD Part number selected.
theContol: LONG Pointer to the control.

No output.

Cal # (not Completeq)
ORD Ney, X ori
Nch-WORD

.'g_in of con trol.

: New y origin of contro].
tthonu-oI:LONG Poj

OInter to contro],
Output: None,

functiop. The contro] jg C1ase from and redray,p at

Position, N, w dNewy ,r, 81Ven in Jocyg c '
€ new top and left side of Cer ect,

changeq 0 keep the s ig

DragControl

Call # (not Completeq)
inpyt: StanPt:I_ONG Stam'ng POsition of Mouse.
ijs:WORD ONstraining axjs,
LiJm't:RECT Limju’ng area o
theConUOI:LONG Poj

Ointer ¢o Controj
Outpuy;: None.

funcu‘on: Drawsg an

OR trlRect and movyes
Moves untl the button is releaseq
calls MoveControl T '
only movye ac

. OX will on]
Cording ¢q AXis. Ay
$0000

No constrain;
$000]

Ove only hoﬁzonml .
SFFFF Move only vertically,

frame of

SizeControl

Call (not completed)
NcwWidth:WO

RD New width
NewHeight:WORD New he;
tthona'oI:LONG Poj

None,

Inpyt:

output:

funcn'on:

TrlRect's left side 10 get ney,.
CtrlRect’s [0p to gey new bottom, and

February 20, 1985

CONTROL _RECORD ACCESS

SetCtlIState

input:

output:

function:

GetCtlState
input:
output:

functon:

SetCtlValue

input:

output:

functon:

GetCtlValue
input:
output:

functon:

February 20, 1986

Call # (not completed)

CtriState:WORD Control's new CtriFlag.
theControl:LONG Pointer to control.
None.

Sets control's CtriFlag and redraws control if active, visible or
highlighted state changes.

Call # (not completed)
theControl: LONG Pointer to control.
CrlState: WORD Control's CtriFlag.

Returns theControl's CrlFlag.

Call # (not completed)

CurValue:WORD Current value of control.
theControl: LONG - Pointer to control.
None.

The new values are set, and the control redrawn. For scroll bars
ScrollCur = CurValue. For check box and button controls CrlFlag bt
5 = CurValue (TRUE or FLASE).

Call # (not completed)

~ theControl:LONG Pointer to control.

CurValue:WORD Control's current value.

For scroll bars CurValue = ScrollCur. For check box and button
controls CtrlFlag bit 5 is returned in CurValue.

SetCtIMinMax : Call# (not completed)

input: MaxValue:WORD Maximum value of control.
MinValue:WORD Minimurmn value of control.
theControl:LONG Pointer to control.

output: None.

function: The new values are set, and the control redrawn. For scroll bars
ScrollMin = MinValue, and ScrollMax = MaxValue. Nothing is done
with check box and button controls.

GetCtiMinMax Call # (not completed)
input: theControl: LONG Pointer to control.
output: MinMax:LONG Minimum value in high WORD,

Maximum value in low WORD.

functdon: Returns the minimum and maximum-values of a control. Zero is
returned for check box and button controls.

FindButton Call # (not completed)
input: theControl:LONG Pointer to control.

output: RadioButton:LONG Highlighted radio button, or zero.

functon: This call searches the control list for the first active, visible, hlﬁ’hll"”te"
radion button. A zero is returned a button is not found. This call i
provided as one way to unhighlight one radio button when another h:u
been selected.

February 20, 1986

DEFINING YOUR OWN CONTROQLS

In addition to predefined controls

» YOUu can also define "¢

need a three-way selector switch, a memory-space indica
Ster control for a spacecraft simulator--whatever your
indicators may occupy regions of any shape.

To define your own type of control,
The Contro] Manager stores this a

you write a contro] 4

ddress in the CtrlPimp

needs to perform a type-dependent action on the control, ;

Keep in mind that the calls your application makes to use ;
definition function. Just as you need to know hoyv to cal]

THE CONTROL DEFINITION FUNCTION

You can give your control definition function any name yc

one named MyControl:

MyControl input: message:WORD Desired
param:LONG Differen
theControl: LONG Pointer

output: RetValue:LONG Depends

The message parameter identifies the desired operation. J -

mnitCnul
dispCntl
getTitle
drawCnt]
testCntl

nou

&

L

<

[=4

(¢4
I T
\OOO\IO\(JIADJN‘—‘O

Do any additiona] cony
Take any additional dis
Return address of cont
Draw the contro] (or co
Test where mouse but
Set control's current va
Return control's curren:
Set contro]'s minimum ;
Return control’s minimu
Set region with control ;

As described below in the discussions of the routines that per
passed for param depends on the operation. Where it's not m
ignored. Similarly, the control definition function js expected
indicated: in other cases, the function should return 0.

February 20, 1986

In some cases, the value of param or the function result is a part code. The part code 128 is
reserved for future use and shouldn't be used for parts of your controls. Part codes greater than
128 should be used for indicators; however, 129 has special meaning to the control definition
funcdon.

User defined control record is as follows:

NextCtrl LONG Pointer to next control, zero = last control.
CtriFlag BYTE Bits 4-0 = 5-31, control ID.

CtalOwner LONG Pointer to window this control belongs to.
CtriRect RECT Control's enclosing rectangle.

CtrlPimp LONG Address of application’s handling routine.

You may append more data to the control record as you would like.

The following Control Manager routines will call your control definition function with the given
inputs, expected results and returns:

NewControl message = initCntl.
param = zero.

RetValue = doesn't matter.

Called after setting CtrlOwner and linking control into control list. This
gives the definition function a chance to perform any type-specific
initialization it may require.

DisposeControl message = dispCntl.
param = zero.

RetValue = doesn't matter.

Called after the control has been removed from the screen and control list.
Your function may then carry out any additional actions required when
disposing of the control.

SetCTitle message = getTite.
param = zero.

RetValue = address of where to store title, or zero if no title.

Expects the control definition function to return an address of where the
Control Manager can store a new string for the control's title. Return zero :f
the control doesn't have a title. If the string is stored, DrawControis w1l]
be called to draw the new title.

February 20, 1986

GetCTitle message = getTitle.
param = zero.

RetValue = address of control's title, or zero if no title.

Expects the control definition function to return the address of the control's
title. Return zero if the control doesn't have a title.

DrawControls message = drawCntl.
param = part code, or zero for entire control.

RetValue = doesn't matter.

The message drawCntl asks the control definition function to draw all or
part of the control. The value of param is a part code specifying which part
of the control to draw, or O for the entire control. If the control is invisidle
(that is, if CrlFlag bit 6 is 0), there's nothing to do; if it's visible, the
definition function should draw it (or the requested part), taking into
account the current values of highlight and active bits in CtrlFlag.

If param is the part code of the control's indicator, the draw routine can
assume that the indicator hasn't moved; it might be called, for example. t0
highlight the indicator. There's a special case, though, in which the draw
routine has to allow for the fact that the indicator may have moved: This
happens when the Control Manager procedures SetCtlValue and
SetCtIMinMax call the control definition function to redraw the indicator
after changing the control setting. Since they have no way of knowing what
part code you chose for your indicator, they both pass 129 to mean the
indicator. The draw routine must detect this part code as a special case. and
remove the indicator from its former location before drawing it.

Note: If your control has more than one indicator, 129 should be
interpreted to mean all indicators.

February 20, 1986

TestControl message = testCntl.
param = Y coordinate in high WORD, X in low WORD.

RetValue = part code.

This message asks in which part of the control, if any, a given point lies.
The point is passed as the value of param, in the local coordinates of the
control's window; the vertical coordinate is in the high-order WORD, and
the horizontal coordinate is in the low-order WORD of param. The control
definition function should return the part code for the part of the control that

contains the point; it should return zero if the point is outside the control or
if the control is inactive.

DragControl message = calcCRgn.
param = part code in high BYTE, region handle in low 3 BYTES.

RetValue = TRUE if region generated, FALSE if error.

This call is to ask for the region of a control, or part, so DragControl can
drag an outline of it. '

SetCtlValue message = setValue.
param = value to set to.

RetValue = TRUE if value set, FALSE if not set.

Set the control's current \./a.lue. Control should not be redrawn here, the

Control Manager will ask for redraw elsewhere if RetValue was TRUE.
GetCtlValue message = getValue.

param = Zero.

RetValue = control's current value.

Return the control's current value.

February 20, 1986

SetCtIMinMax

GetCtIMinMax

KillControl

HideContro}
ShowControl
HiliteControl
ControlState
FindControl
TrackControl
MoveControl
SizeControl
SetCtIState
GetCtIState

February 20, 1986

= setMinMax.

message .
= Maximum value in high WORD, minimum value in low
WORD.

param
RetValue = TRUE if set, FALSE if not set.

Set the control's minimum and maximum values. Control should not be
wn here, the Contro] Manager will ask for redraw elsewhere if

. RetValue was TRUE.
message = getMinMax.
param = zero,

RetValue = Maximum value in high WORD, minimum value in low
WORD.

Return the control's minimum and maximum values, or zero if the contro]
does not use them.

Doesn't call the contro] definition function directly, calls DisposeControl
for each control in the control list.

Doesn't call the control definition function.
Doesn't call the contro] definition function directly
Doesn't call the control definition function directly.
Doesn't call the contro] definition function,
Doesn't call the contro] definition function,
Doesn't call the contro] function directly.

Doesn't call ‘thc control function directly.

Doesn't call the contro] function directly.

Doesn't call the contro] function.

Doesn't call the control function.

